Exercise 4

Explain carefully the statement after Eq. A.3-17 that the $i l$-component of $\{\boldsymbol{\sigma} \cdot \boldsymbol{\tau}\}$ is $\sum_{j} \sigma_{i j} \tau_{j l}$.

Solution

Taking the dot product of two second-order tensors yields a second-order tensor.

$$
\boldsymbol{\sigma} \cdot \boldsymbol{\tau}=\boldsymbol{\eta}=\sum_{i=1}^{3} \sum_{l=1}^{3} \boldsymbol{\delta}_{i} \boldsymbol{\delta}_{l} \eta_{i l}
$$

It has two indices going from 1 to 3 , meaning it has nine components in total. The coefficient of $\boldsymbol{\delta}_{i} \boldsymbol{\delta}_{l}, \eta_{i l}$, is referred to as the $i l$-component of $\boldsymbol{\sigma} \cdot \boldsymbol{\tau}$.

$$
\begin{aligned}
\boldsymbol{\sigma} \cdot \boldsymbol{\tau}=\left(\sum_{i=1}^{3} \sum_{j=1}^{3} \boldsymbol{\delta}_{i} \boldsymbol{\delta}_{j} \sigma_{i j}\right) \cdot\left(\sum_{k=1}^{3} \sum_{l=1}^{3} \boldsymbol{\delta}_{k} \boldsymbol{\delta}_{l} \tau_{k l}\right) & =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \boldsymbol{\delta}_{i}\left(\boldsymbol{\delta}_{j} \cdot \boldsymbol{\delta}_{k}\right) \boldsymbol{\delta}_{l} \sigma_{i j} \tau_{k l} \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \boldsymbol{\delta}_{i} \boldsymbol{\delta}_{j k} \boldsymbol{\delta}_{l} \sigma_{i j} \tau_{k l} \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{l=1}^{3} \boldsymbol{\delta}_{i} \boldsymbol{\delta}_{l} \sigma_{i j} \tau_{j l} \\
& =\sum_{i=1}^{3} \sum_{l=1}^{3} \boldsymbol{\delta}_{i} \boldsymbol{\delta}_{l}\left(\sum_{j=1}^{3} \sigma_{i j} \tau_{j l}\right)
\end{aligned}
$$

Therefore, the $i l$-component of $\boldsymbol{\sigma} \cdot \boldsymbol{\tau}$ is

$$
\eta_{i l}=\sum_{j=1}^{3} \sigma_{i j} \tau_{j l}
$$

